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Abstract

A nuuiher of advanees in modeling mulitphase incom-
prossible flow are deseribel. These advances incluede
high-order Godunov projection methods, piecewise lin-
ear interface reconstruetion amd teacking and the con.
tinuam surfaee foree model, Exnmples aee given,

I. Iutroduction

Las Alamos National Laboratory (LANL) has a long
history in commputational fluid dynamies. A particularly
important contribution came in 1965 with the Marker
and-Cell (MAC) method for incompresible multiphase
llorws, which is a method along with i1x sueecessors that
remnins a popular choiee to this day. An exmnple of n
MAC suceensor is the SOLA-VOF method. which eou.
plesd the SOLA (solution algorithm) methodology with
a volume tracking method for Huid interfaees. In the
nearly thirly years ginee the ineeption of these algo-
rit hnw, numerous advancees have been macde, We disenss
the impact of these advanees on the asrurate solutions
of incomprewible mnltiphnse flows,

Fimt. we o weribe a new algorithim designed to im
prove the accuracy of the low solutions. This met haod

*All « ctrsporwdence slusilld he sest to William 1. Rider, Mail
Stop BAA, Las Alanws Natwnal Laboratory, Las Aanws, NM
ATRAS, USA. E-mail: wjr€lenl.gov. [his work performed under
the amspnees of the US, Department of Energy by las Alanes
National Laboratary ninder Conteact W.T4D5- NG 6. This pa-
per in declared work of the US, Government and is oot aubjeet
to copyright protection in the United States.

i~ a semi-implicit projection ethod that uses high-
order Godunov methods for udveetion ). The method
in secomd-order aecurate in both time  ad space. and
does not sufler from cell Revnolds number-based stahil-
ity remtrictions  ‘The linear aystems of equations arising
from the projection and diffusion steps are solved via
nmltigrid methods, ‘The algorithi is constructed for n
wide range of flow regimes. ineliding maltiphase flows
where density ratios across interfaces can be arbitrarily
large. This feature is greatly facilitated by the use of
volume tracking with this method, In conjunction with
low error forimulations and the filtering of ronm. *noidal
modes, the method remains robust for difficult prob-
lems.  Our method also merges -uite nnturally with
physical madels suich as the CS1E (continmum surface
foree) model for surface tension [2).

Capturing Nuid interfaces with volume tracking tech-
nigues remiains quite effective, hut only when subse-
quent improsements to the original method (developed
15 years ago) nre taken into consideration. An example
is the use of piveewire lineqr or planar approximations
to the interface geometry [3]. Volune tracking allows
mterfaces 1o be eaptured and maintained eompactly in
one eell withomt impising, restrictions on the topolog-
ieal complexity or the nupmiber of interfaces that can
he represented 1 s also conservative. The ability of
the basie volume trackimg method 1o captur. interfaces
in exhibited with examples and simmiation animations.
Comparisons are also made where possible with other
interfnee capturing algorithme.

Physical processis sperilie to aned loealized at fluid in
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terfaces (e.3. surface tension, phawe change) are modeld
by applying the process to Hluid clements everywhere
within the interface transition regions.  Surface pro-
cewsen are thereby repluced with volame processes whose
imegral effeet properly reproduces the desired interface
physies. Thisx methodology is the nnderlying b-ature in
the C'SF method for surface tension. whicrh has proven
siiceessful in a variety of «tudics. The CSF method lifts
all topological reatrictions (1ypically inherent in models
for surface tension) without sacrificing accuracy. robust-
ness. or reliability. 1t has been extensively verified and
texted] in twoe-dimensional flows through its implementa-
tion in a classical algorithm for free surfie e flows, where
complex intetface phenomena such as breakup and eo-
alexcence have been predicted. This suceesst led to onr
current tocus on extensions and enhancements to the
CSE methad, namely three-dimensionality. an implicit
formulation, and the addition of variable surface ten-
sivn elfeets. Compurational examples are shown of its
capabilitien.

II. Projection/Godunov Methods

We solve the cquations of incompressible multiphase
flow. The equations of otion

I' .
"% + T ouu+ lva - I-V'I' (Vu+ ¥ul) +F. (la)
( " r

the conservation of mass

Vo= (Ib)
and density aped viserity transport
dp
— +u-Vp=\ {le)
i
andd .
'-,ﬂ tu-Vu =0, (ld)
it

Tn these eruations, w w the velocity veetor, o s the
incompressible pressare. p the fluid density, g the vis
eosity and F is the moementum (veloeity ) souree teem.
F can inclnde the effeets of gravity or surface tenson for
instance. In our ealeulntions, the transport of density
amd vinersity is solved with one equation,

o ta Vf- 0,

in ()

where [ is a volume fraction of a flnid having ceriam
properties.  This voluime fraction is then used to de
termine the average cell-contered values for density and
viscosity (an well an delining the loeation of a front)
Denwity i recovered lrom foan follows (Tor twe lhnds o
nnd b.

,"‘I) 'fl'.. V(1 f\[u..

atd similrly vixeosity

plfy=fpa+ (1= .

These equations will he then solved via a projection
methaod deserihed below.

Our basie goal with projecrtion methods is to ad-
vance a velocity field, V = (V7. v'%)" by some conve-
nirnt means disregarding the solenoidal nature of V,
then recover the proper solenvidal velocity field, V4
(V- V*E=1). The means to this end is a projection, P,
which has the ofliet

vi=p(v).

The projection accomiplishen this through the decompo-
sition of the: veloeity field into parcis that are divergence-
free and curl-free. This is known ns a Hodge or
lelmholtz decomposition (], he curl-free portion will
Le denotedd by the gradient of a potential. V. This
decomposition ean be written

V=Viiav,. (2)

where e = 1/p.
Iaking the divergenee of (2) gives

T V=C VIt T.aV: -V V=V.0Vy.

Once = has been computed. then the solution can be
found through
Vi=V-aV, (3)

We will be concerned with a class of solution al-
porithms known as approximate projection methods.
These methods are extensions of the classic work of
Chorm [3]. and its modernization by Bell, Colella and
Glaz (5] for solving the incompressible Navier-Stokes
equations. These methods are alko used to solve equa-
tions with varving density [1]. Here we focus on the ap-
proximate projection methods introduced by Almgren,
Bell and Szymezak [7].

Progeetion methods ean be defined in several ways.
In the clnssical npproach the discrete equations behave
similarly to the analytic projection operators.  Unfor-
tunately, these methods have n number of problems for
practical problem. \We will be defining discrete meth-
ods based on the continnous projections eather than de-
manding that the diserete system algebraically match
the conditions for being a projection. Thus, the most
straightforward means to diseretize ench operator (V-
V ami v V) will be chosen (not quite true, but
nearly).

T'wa popular approaches tosolving the incompressible
flow equations are the projection and the pressure Pois-
som equation (PPE) methods. We will extablish the link
hetween thewe methods and disenss their We have fouzid
that the formmlation of the Moison pressure equation
can have a profound mmpact on the solutions quality
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The most robust fornmlation we found is formulated in
the following faskinn for a fractional step method

| T - !
n= )

' pmy At

where o is the pressure and u” "+ s the predicted vie-
locuy defined by

. -1
“.n+l=(1_%’_ | _T'II'H’? (v_‘_v,-))
4 I,"""_" v
n ' -y =L
;[u" - AV nu) A _;l__—z-V.:,' .
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In terms of a pressure Poisson equatiea, the fonm hor
the right hand side would he

l

A} (—,-‘-;-‘_—‘—-[l”+.f {(Vu - ""u"_l'“rf
Il
- Yomu)"ti e Ftt s ‘_l\_f)

T'his option controls the prowtlh of the diserete diver
cener without sacrficing, the aceuracy of the method
A full exposition on this subject s given i[5, 9].

When using approximate projections it is staportant
to control the growth of divergence errors, This can be
accomplished through the use of liltering, A number
of filters have been devised 1o remove or dp spuri-
ous non-divergence-free modes from the solntion, $n-
obstructed these modes can seriously damage the acen-
racy and stability of ealeulations, Lhis is especially true
in several eases: large density juimps, loeal souree terins
(stueh as surface tension) and for long term inteerations.
Phes filters are deseribed more fully in (8, 10]

The use of nonoperator split high-order Godunov ad-
veetion is also important to the method’s suecess,  This
method avoids the use of opeeator : piitting, and allows
the consistent use of high-order inonotone adveetion
in inconipressible flows.  lhie wethod also has exeel-
lent phase error properties and caompares favoribly with
higher order Runge-Katta methods on ivpieal grids.

Space does not peenit an adequete deseription of

the wiethod and good descriptions appear in several
soupees [, 60 1 12, 7080 The basie point of the
method s 1o implement a second-order Taylor sepjes
in hoth time amd space expapsion for the dependent
vitrinthles i multidimensional forme,. Varaibles are eon
striucted o cell-edpges (whers they will he nnltivalued)
and then the upwind values are propagated in the Gl
tion. Durme this procedore the complete effect of the
governing equations is used to approxitnate the thine
derivatives (souree terms, pressiree eradients and the

Cerattn and [lochsten

incompressility constra ). The use of the incompress-
ibility constaim leads 1o the “MACT projection where
tune-centersd normal veloeities are used to compiute a
povential lield thar corrects them to be divergence-free.
I'his 2llows the method to use a divergence free velocity
fieddd for the purpose of adveetion (even with an approx-
imate projection) and maintain second-order accuracy.

Several pomts are important to emphasize.  This
method is not hound by a stability restriction related to
the Revnolds number. Thus this method can be used
1o compute hoth viscous and jnviseid flows. Results
show that the method ean resolve flows up to a grid
Revnolds mumber of 100 Bevond this the solver will de-
srade s a praceful Iashion and produce physical, but
not necessarily accurate resnlts (in the classical sense).
Che advection meraod is also robust in cases where the
{lone contains discontinnities (surh as a shear).

I1L

[nterface Kinematices

A ol thes maethods indhis paper solve the equation

‘-’i «~u-Vf=n

da
2 (4a)
where [ is some sealsr earrying inte;face or “eolor™ in-
formation.  An equivalert equatin for incompressible
lows =

l'lf

=+ % (uf) =0, (4b)
1l
simee ¥ o= 0,

A partick method is perhaps the most straight-
forward, drawing upon recent advances in PIC algo-
rithms {13). Particles are assigned a mass according to
the density of the lud in whieh they reside and a volume
(hienee size) aceording 1o the interpolation function cho-
sen to interpolate quantities to and from the computa-
tional grid. While thus method provides a superior mul-
tidimensional erid-independeat adveetion scheme, there
are as a result some practical dificulties. nnnely the
cost amd aceuraey assoctated with interpolating the par-
tele information to an Euleran grid [, 5]

Simply diseretising (1) with a high resolution finite
dilference seheme is guite appealing. An advection al-
gorithun is typically an integrai part of a flow solver,
This is done in the miethods presented in 1, 16]. ; From
the advanees in high speed flows in the last deeade, there
are a munber of methods thay minimize numerieil dis-
sipation.  An example of this are high-order Godunoy
methods in particular PPM [17, 18]

Problems with the numerieal dissipation (leading to a
thickening mterface) led researchers to propose an inge-
nions compronise. The level set inethods could be ime-
plemented with the same dilference technigques already
well developed for adveetion, bt without allowing the
imterfaee to smear. Phe interlaee is defined as the zero




Itideer. Kothe, Morso. Ceratti and Hochstemn

level set of a distance function. ¢ from that interface,

Instead of (1), the following equarion s solved
‘:T:+u-v:.- =u,

We also study improvements sngeested Ly Snssman.

Smercka and Osher (14).

VOF methods bave been usd for several deeades
starting at the national laboratories ( Lisvermore {20f and
Loa Alamos (21] and later Sandia [22]). The earlier work
15 typilicd by the SLIC [23] aleonthin aid vhe orig-
inal method with the mon ker VOF 210 Iu each of
thiese methods the interface jis Jdexignatea as a straight
line in a cell defined by the volume of a given flnid
in that cell. Youngs [3] improved the general method
areatly by allowing the reconsiruction of the imerface
to he wultidimensional and linear in nature, Younes
further extended his method o theee dimension in 23]
Recemly. Pilliod and Puckett have nuproved e acen-
raey 126, 27, 2K Here we refier 1o thin method ax the
piceewine linear interface caleulation (PLICY,

Our 1esulis indieate that the PLIC neethod prodoees
the bt overall resutltx. Captaring methads althooeh
simple are expensive when naplemented 1o achiose the
besi resolution of interfaces and stili Jdo not marek the
rxolution of PLIC. Level sets methods although con-
ceptually appealing sutfer from a number of detriments.
First among there is the iack of volutie tmass) consaer-
vation. Cost is also an evue.  Particle methods offer
exeollent. numerieal diffision-free results, but have 1wo
problems: cost and the problem of mapping the parn
cles 10 a grid in a manner free of cserllatory modes.

Thewe results heeome quite obviows when nontrivial
pure adveetion problems are ured to evaluate vhe meth-
orde. By nontrivial we mean that the flow field varys in
space and perhiaps tite and contains vorticity. For the
purpasex of solving multiphase flow we favor met hod
that preserve symmetries in the solution naturally. For
this renson we have developed an unsnlit (not opera-
tor split) version of the PLIC miethod that will he used
Iwlow for wome examiple calealations,

IV. Interface Dynamies

Interfaee dynamics mch an kurfeee tengion are mod-
el with a loenlized volume foree preseribed by the
CSE model [2] Ideally anited for interfaces of arbitrary
amld chianging topology, the CHE model™s eenteal theme
of vodue reformmlntion is a new and radieal depar-
tare from previous traditional fimte dilferenee pepresaen.
tations of juterfacial phenomena such as surfaee 1en
sion. hie basie premise of the CSE aode! is to peplacee
interfacinl surface phenomena, normaily applied via a
dinerete boundary condition, i smonthly varying volu
metric forees depived from a produet of the apprognate
interfacial physies per unit aren and 0 nnmerieal ap

proximation to the surface (interface) delta funetion.
T'he rexulting simplicity, aceuraey, and robustness. of-
ten a rare vel sought after combination for numerical
tmodels. hice Bl 10 15 widespreald and popnlar ase in
modeling complex interfacial flows that were in many
cimes previously intractable. For modeling surface ten-
sion, the redevant surface phy=ies is n foree per unit area
anxing from loeal interface curvature and loeal (tangen-
nal) variations in the surface tensjon coefficient. Surface
phenomena other than xurfare “vngion can also be en-
capsulated «axily within the CSEF model. examples are
phase snange and neomeniuea exehangeq], where the sus-
face physies are mass and momentum flux. respectively,
transferred across the intertace,

In this wetion. we briefly review the theory of the CSF
model, then discuss some mmiportam issues pertaining
1o the acenrate formulation of the necessary diserete
aperators. We also outline the CSF enhancemnents and
aprovenments that are currently being stadied which
shonld allow « more ellicient modeling «f a wider variety
of interfacial llws.

[ ties CSF medel, surtaee tension 1< reformulated as
a volume foree Fy salisfvine

lim F.Adr - / f(FS . (5)
h=u Jav as
where £, is a pant on tie surtace, £ (F) the surface
tension foree per unit terfacial area,

fr(r.) — ortF)nld,). (6)
and h ix n length comparnble to the resoletion afforded
by a eompritational m sh with sparing Ar. The area in-
tegral is over the portion AN of the surface lying within
the smuall volume of integration AL,

Sinee interfaces having, surface tension are tracked
with the aforementioned PLIC volume tracking imethod,
their tapology will not in general align with logical tnesh
coordinates, Diseontinuons interfaces are therefore rep-
resente] in the computational demain as linive thicknews
transifion regions within which fluid solume ieactions
vary smonthly from zero 10 one over a distanee of O(h).
The salume foree, nonzern only within thewe transition
reggions, 8 given i the CSE model by {2]

FulF) - owlF) ) (7)

where m is the surface tension contlicien £ is VOF fune.
tion. and & the mean terface curvaturee, given by:[?)

[OREPRN | Wi 7Y (¥)

where the unt normal »,

T ("M
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is derived from a norimal vector 7.

i=Y/. (10)
*hat is the gradient of VOF data. Beeause the curvature
is proportional to the second derivatves of the VOF
fnetion. surface foree modeling can be very sensitive
to small Juctuations in f. possibly amplifving them

The ¢'SF formulation makes nse of the iact vhat nu-
merical mod.Is of discontinuitirs in fimte volume and fi-
nite difference schemes are really continnous transitions
withinn which the fluid properties. vary smoothly from
one (lmd to another over a distance of O(h). where h
is a lergth comparable to the eesolution atforded by a
computational mesh with spacing Ar. It is not appro.
priate. sefore, 1o apply in finite Jifferenee schemes
a pressure jump indaced by surface tension at a free
surface “discontinuity.” Surface tension should act evs
ervwhere within the transition region. uamely through
the volume foree F..

I'he voinme foree in the CSEF mode] is easily caleu-

. Cerntti and Hochstem

lated by raking first and second order spatial dervates of

the fluid volume fractions. At each pomt within the feee
siurface traasition region, a cell-centered vaiue F, s de-
{ined which s peoportional to the eurvature & of the con-
stant VOF surface at that pomt. Tae foree is normal-
wed to recover the eonventional deseription of surfaee
tension as the local product &b — . Its line integral
‘lireeted normally through the free surface transition re-
sion is apprximately equal to the surface pressuee in
equation Wall adhesion is incorporated by enforeing a
simple houndary condition.

Surface tension moddced with the continunm method
climinates the need for suterface reconstruetion, so re-
strictions on the number. complexity, or dynamic evo-
lution of interfaces haviag surface tension are not ine-
posed.  Direct comparisons hetween modeling surface
tension with the CSE model and with a popular in-
terface reconstruction model show that the CSE motdel
makes more accurate use of volume fraction data[2] The
volume foree always tends to foree the free surface to
seek o minitum surface energy conliguration. Recon-
struction modals, on the other hand, tend to induee
numerical noise from computed praininess in the sue-
face pressures, often leading 1o unphysieal free surface
disruplions. In addition to providing a more acenrate
finite diff-rence representation of surfaee tension with-
out the topological restrictions. the CSF model is easy
o implement computationally. Surelnee tension is eas-
ily included by ealeulating and applying an extra body
foree, Fy. in the momentum equation. A «mall fraction
of the total CPU time {few pereent) is spent computing
surface tension effeets,

T'he force Fy resides al coll centers in this scheme,
colloeated wita all other fluid quantisies. In practice
we dind that the use of more free interface information
information {a larger stenetl) leads to o better estimate

of curvature. This appears 10 be the case for F, at
eoll centers, which requires 2 6 cell stepcil when both
components of interface normal 7 are collocated at faces.
A cell-cenvered foree is then obtammed by summing over
cell fares, whieh brings the effective stencil to 9 cells.

I'he “optimal™ diserete approximation of Fy in the
CSE model is Tikely 10 be one that properly accounts for
the duality of needing a large steneil for accurate cur-
vature estimates and a compact stencil for maintaining
the locality of volume force. Our current operators for
F. are found to mive the god results in practice. They
are not necessarily optimal. and eertainly by no means
unigue.  Some comparsons with theory using various
ditference expressions for F, can be found clsewhere.[2]

A smeothed value of the curvature & can be computed
frem equation 7?7 by using a smoothed VOF function
_flu derive the normals needed in eqnation 10, The
smoathed VOF funetion 1s computed with an expression
of the form

Z L oSt —J'.:hlS”—'(y; —y,:h) .

[ R |

fi;
(11)
where & is a Besplinei?? of degree 1, having finite
support. 8 —rih) £ 0only for ' - r < (£+1)h/2.
This smoothing tends 1o mitigate the high wavenumber
contributions 1o &, which may or may not. be a result of
diseretization errors. It should, therefore, be used with
caution hecause the real free surface geometry might
be unphysically mollified. Fxamples of the smoothing
effects can be found in the CSF paper.[2]

The representation of surface tension in the CSF
model as a tine 1" baody foree is linearly stable only
for time steps smaller than a certain maximum allow-
able value é{; pecessary 1o resolve the propagation of
capillary waves.[2] evaluated as

gy 1?

I"lmm

Mo M, = n
T

(12)

where Sy, s the nunimum mesh eell Jacobian.

Wail adhesion is the surface foree acting on fluid inter-
faces at points of contact with “walls,” which are static,
rigid boun:laries. Wall adhesion forees are calculated in
the same mant.er as volume frees due to surface (en-
sion are caleulated. exeept that a boundary condition is
applied to the free surface unit normal n prior to eval-
ualing equation 10, The candition is applied only to
those normids Ivine on i rigid bonndary, Those forees
F., attributed to wall adhesion are thereflore coly in cells
along a1 boundary.

The wall adbhesion honndary condition becomes an
expression for the unit free surface normal n at points
ol contact 5 along the wall:

n = nwceosth, Flgsin O,

(13)
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where #,, is the static contact angle biiween the lluid
and the wall. ny 1» the unit wall normal dieeets d jnto
the wall. and ¢ is tangent 1o the wall, normal 1o the
cantact line between the free surface and the wall at 7.
Ihe equation uses the geometric wdentiny that v, de-
lined ns the angle hetween the tangent to the fluid and
Iw. in alko the angle between ny and n. The umt tan-
£ent e is directed into the luid. and is computed from
syquation 10 with the VOF function f reflected ot the
wall. The angle #. is zot a flmd material property. hin
a avstem rroperty. debending also on properties of the
wall itaell. The vidue of A, 1s measured experinent iy
when the fluid is av rest, We emphasize that the wall
adhesion boundary eondition above is applied regard-
s of whether or not the angle the fnid interface with
the wall is actually erual to 0.

\".  Algorithm Summu

Algorithm 1 /Gwduner/Projection Method

. - L

I Start with data ", f7, o"*-.

2. Compute the time- and edge-centered veloeny field
via the Godunov procedure based wley oncdara at
time n.

S, Solve the “MACT prjection ard correet the tine-
Lo i
atd edge-centered velocity field so that Du"+s =
1.
. L
1 Using u"+=
nton+1.

update the volume fraction data from

S0 Using f*! compute p"* oand 5t

6. Compnte the CSF sonree lerm wmg 74 -

VARV RB Y

. Update u” 10 q="+!
C'SF sources.

with advection, diffusion and

R, Solve the projection L.o"*¥ = In="* and cor-
reet the velocition to u+!,

O, Filter the advaneed time veleeities.,

10. Begin the next eyele

Several eomments are in order eegarding the method
we' une. Phe stability restriction on the method is the
~nm of the usual CVl resioietion and the sestrction
based on the capillary wns speed.  Linear alpebra s
computed using a nudtigrid method, One for the simgle
pressure sqquations and a second method for the coupled
veloepry diffusion equations. Onre advection method 1w

based on a varant of the PPM niethod (use- PPM 18 the
se-dimensional builang block for the unsplit scher:ze).
Volume teacking is computed using nn unsplit methods
using . modificd version of Pillicd and Puckett's {ast
lsast sqquares algorithm.

VI, Numerical Examples

lere we will prresent three nunerieal e:amples fo the
methods wis have deseribed. The it example is a drop
Malling intor a pool and the subsesquent <plash. Our sec-
oml problem is a Rayleigh-Taylor instability. Finally,
we show a Kelvin Helmholtz instability as an idealized
low of wind over water,

The drop amd splash is %t in a 1 x 1 box with the
drop and ponl density being 801 tines higher than the
rst of the medium. The -rop has a radius of 0.156 and
i s at 10.50,0.75) Each boundary 15 a solid wall, The
compatant nal grid is 128 x [28, and is at rest initially.
Ihe pool eovess the bottom of the lomain and has a
depth of 0.25 anits. The heavy flnid has a viscosity
that ix 32,5 tine higher than the surrounding medium.
I'he bigh density Huid viscosity is 0.001 and the Bond
mimber, lpglt* /e = 1000, Gravity 1s set 10 =1, The
wall acddbestor model 1s used with and equilibrium angle
of 15 degrees.

The Rayleigh- Faylor instability simulates 1ir above
lelivitn gaving a density ratio of 7.25:1. The air's viscos-
iy is 106 times larger than the helium. The compuva-
tioual grid ix 61 x 2565, In the honzontal direction the
domain ix periodic. Gravity is sel 10 -1. A perturbation
ik applied to the vertieal veloeity of

v = 0005 [ron (27r) + 1)

The ecaleulation uses uo surface tension.

I'he third problem « a Kelvin-Helmholtz instability.
I'he physical propertios are the snue as the first prob-
lem. The lower part of the domain i flled with water
with air above. he ompmational grid in 256 x 64. In
the horizomtal direetion the domain is periodic. Gravity
v aet to -l A perturbation is applicd to the vertical
veloenty of

ro= 0005 [eos (2xr) 4+ 1)

Surface tension is applicd (o the problem

VII. Futuge Directions
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